KSDF Çѱ¹¿°»ö°¡°øÇÐȸ
HOME KOREAN
Aims and ScopeAims and Scope
Editorial BoardEditorial Board
Journal InformationJournal Information
Current IssueCurrent Issue
Aims and ScopePast Issue
SubscriptionSubscription
For AuthorsFor Authors
Online Submission
NDSL
KSCI
KOREA SCIENCE
DBPIA
dibrary
oak
oak
oak
oak
LTWA
Past Issue
Journal Textile Coloration and Finishing
Year / Vol.,
Issue, Month
2022 / V.34,no.2,Jun
Title A Study of Dyeing Properties of Cotton Fabrics Under Supercritical CO2 Depending on Dyestuff : by C.I. Disperse orange 155, C.I. Disperse red 167
Authors Hyunseuk Choi*, Hunmin Kim, and Taeyoung Jeon
Institution/Affiliations DYETEC
Pages/Total page pp.93 ~ 101 / 9
Language Korean
Abstract In this study, the dyeing properties of supercritical fluid dyed cotton fabrics were investigated which use two types of dyes, such as C.I. Disperse orange and C.I. Disperse red 167. Dyeing temperature, pressure and leveling time were equally applied at 130 ¡ÆC, 250 bar, and 60 minutes with reference to the related literature, and experiments were performed at concentrations of 0.04, 0.1, 0.4 and 0.8 % o.w.f with different concentrations. Dyeability was confirmed through measurement of washing fastness and color coordinate, and a calibration curve of each dye was drawn up and the absorbance of the residual dye was measured to confirm the amount of residual dye and the dye exhaustion rate at the corresponding concentration. As a result of color difference measurement, as the concentration increased, the L* value decreased and the K/S value increased. However, as the concentration increased, the increase in K/S value decreased compared to the input amount, and this tendency was more obvious in C.I. Disperse red 167 than in C.I. Disperse orange 155. The dye exhaustion rate which was calculated by using the amount of residual dye in the pot was also C.I. Disperse orange 155 was 96.16 % and C.I. Disperse red 167 was 94.57 %. However, as the dyeing concentration increased, the dye exhaustion rate decreased, that C.I. Disperse orange was 95.33 % and C.I. Disperse red 167 was 90.63 %. As a result of the washing fastness test for both dyes, dyed samples of which concentrations were 0.4 and 0.8 % o.w.f decreased by 0.5 ~ 1.0 grade. This is predicted because the dye did not completely adhere to the amorphous region of the cotton fiber and the dye simply adsorbed. The fastness to rubbing also maintained at least grade 3-4 up to the 0.1 % o.w.f concentration, but at the concentration of 0.4 % o.w.f or higher, it fell to grade 1 or lower, showing a very poor friction fastness.
Keywords supercritical fluid, dyeing concentration, dyeability, cotton, residual dye
Download  
Reference https://koreascience.kr/journal/OSGGBT.page

          list