KSDF Çѱ¹¿°»ö°¡°øÇÐȸ
HOME KOREAN
Aims and ScopeAims and Scope
Editorial BoardEditorial Board
Journal InformationJournal Information
Current IssueCurrent Issue
Aims and ScopePast Issue
SubscriptionSubscription
For AuthorsFor Authors
Online Submission
NDSL
KSCI
KOREA SCIENCE
DBPIA
dibrary
oak
oak
oak
oak
LTWA
Past Issue
Journal Textile Coloration and Finishing
Year / Vol.,
Issue, Month
2019 / V.31,no.2,Jun
Title Multi-point Flexible Touch Sensor Based on Capacitor Structure Using Thin Copper-Plated Polyimide Film for Textile Applications
Authors Junheon Lee and Taekyeong Kim
Institution/Affiliations Kyungpook National University
Pages/Total page pp.65 ~ 76 / 12
Language English
Abstract A multi-point touch input sensor having different sizes or different capacitance touch points connected by only one pair of signal transmission lines was fabricated using a polyimide film coated with a thin copper plate. The capacitance increases with the decrease in the number of sheets of fabric spacers placed between the two sheets of the polyimide film. Therefore, the touch input sensor could be manufactured without fabric spacers, which was possible by the action of the polyimide film as a dielectric material in the capacitor. On the multi-point touch sensor, higher capacitance was obtained when pressing wider-area touch points with 10mm to 25mm diameter on average. However, the capacitance of a system comprising two sheets of touch sensors was considerably low, causing a serious overlap of the capacitance values according to the data collected from the reliability test. Although the capacitance values could be increased by stacking several sheets of touch sensors, the overlap of data was still observed. After reducing the size of all touch points to 10mm and stacking up to eight sheets of sensors, reliable and consistent capacitance data was obtained. Five different capacitance signals could be induced in the sensors by pushing touch points simultaneously.
Keywords flexible touch sensor, wearable, polyimide, capacitance, convergence
Download  
Reference http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=OSGGBT_2019_v31n2_65&ordernum=

          list